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Basic Idea of Causal Inference

Social science (Economics) theories always ask causal questions.

In general, a typical causal question is:
The effect of a treatment (X) on an outcome (Y).

Outcome (Y): A variable that we are interested in.

Treatment (X): A variable that has the (causal) effect on the outcome of our interest.
The best way to address this question is conducting a Randomized Controlled Experiment:

o Treatment group: Receives a treatment.
e Control group: Does not receive the treatment.

the two groups are identically equal except for being treated or non-treated.

Outcome of Interest:

AY = Outcome for treated individuals( Y1) — Outcome for control individuals( Yp)
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Example: Fertilizer and Crop Yield

Description:

@ A randomized trial is conducted to evaluate the effect of a new fertilizer on crop yield.
@ Farmers are randomly assigned to:

o Treatment group: Use the new fertilizer.
o Control group: Use traditional farming methods without the new fertilizer.

Findings:
@ Average crop yield increased by 15% in the treatment group compared to the control group.
Why Randomization Works:

@ Ensures that treated and control groups are similar in observed and unobserved characteristics
(e.g., soil quality, farmer skills).

@ Any difference in yield is attributable to the fertilizer.
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Randomized Experiments in Econometrics

Randomized Experiments are often not feasible
@ Practical constraints
@ Confounding Factors
Quasi-Experimental Methods:
o Difference-in-Differences (DiD):
o Compares pre- and post-treatment outcomes between treated and control groups.

o Instrumental Variables (IV):

o Uses an external factor (instrument) that affects treatment assignment but not the outcome directly
(e.g., weather patterns influencing fertilizer adoption).

o Regression Discontinuity (RD):
e Exploits a cutoff rule for treatment assignment (e.g., subsidies based on farm size thresholds).
o Propensity Score Matching (PSM):

o Matches treated and control units with similar observed characteristics (e.g., similar soil quality and
farm size).
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Example: Using Difference-in-Differences

Study: Impact of Fertilizer Subsidy on Crop Yield

@ Government introduces a fertilizer subsidy for small farmers in one region (treatment group) but
not in another region (control group).

o Compare crop yields before and after the subsidy.
Why This is Quasi-Experimental:
@ No randomization of the subsidy.

o farmers may differ in observable and unobservable characteristics that can affect both treatment
assignment and crop yield.
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Potential Confounding Factors in Crop Yield Example

Potential Confounding Factors:
o Soil Quality:
o Fields with better soil naturally have higher yields (Y).
o Farmers with lower-quality soil may be more likely to invest in fertilizer (X).

@ Sunlight Exposure:

o Fields with better sunlight exposure have higher productivity (Y).
e Sunlight exposure is often unobserved and may vary systematically across regions.

@ Technology and Farming Practices:

e Farmers who receive fertilizer may also have access to better technology or irrigation systems (Z).
e Improved technology directly affects crop yield (Y), creating a spurious correlation between X and Y.

Why These Factors Matter:
@ Ignoring these confounders leads to biased estimates of the fertilizer's effect.

@ The observed increase in crop yield may not solely result from the fertilizer.
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What is Econometrics?

@ Econometrics combines economics, mathematics, and statistics.
@ It aims to answer questions like:

e Does an increase in education lead to higher earnings? (Causality)
e How do changes in policy affect economic outcomes? (Policy Evaluation)
o What factors predict a country's GDP growth? (Prediction)

o Ideally, we would like an Randomized Controlled Experiment, but almost always we only have
observational (non-experimental) data.

@ Issue to estimate causal effects with non-experimental data:
- confounding effects (omitted factors)

- selection-bias

- simultaneous causality

- “correlation does not imply causation”
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Objective of this Course
Key Questions:

Correlation vs Causation: How to determine causal relationships.

Endogeneity: When explanatory variables are correlated with the error term.

Model Selection: Choosing the appropriate model for analysis.

o Interpretation: Translating results into meaningful economic insights.
Topics

@ Ordinary Least Squares
Issues with OLS: Omitted Variables, Heteroskedasticity, Simultaneity
Instrumental Variables
Bianary Dependent Variables (Logistic Regression) and Poisson Regression
Generalized Method of Moments
Panel Data Methods

Treatment Effects (Difference in Difference and Regression Discontinuity)
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Review of Probability

Random Variables and Distributions
Expected Value and its Properties
Variance, Covariance and Correlation

Joint Distribution, Conditional Distribution

Conditional Expectation
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Random Variables

A random variable is a variable whose value is determined by a random process.

Types of random variables:

o Discrete: Can take only discrete values (e.g., number of students in a class).
o Continuous: Can take any value in a range (e.g., height, weight).

Examples:

o Discrete: Number of heads in 10 coin flips.
o Continuous: Temperature in a city over a day.

The Probability that a random variable X takes a specific value (X = x) is defined by its
probability distribution function (PDF) fx(x).

The probability that a random variable X takes values below x is given by the Cumulative
Probability Density Function Fx(x) which corresponds to the area under the PDF.
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Let Y be a random variable that represents the per-capita income

PDF CDF

Add area under

$26k curve (integrate) $26k

Probability of income
Probability income <y

(The value of the green
shaded area)

Income (y) Income (y)
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Discrete Distribution

o Example: the Binomial distribution models the
number of successes (k) in a fixed number of

independent Bernoulli trials (n), each with a

probability p of success. For example: The number

of heads when flipping 3 coins.
@ The probability mass function (PMF) is:

n

POx =0 = (7)ot K

0,1,...,n

o CDF: The CDF is the cumulative sum of the PMF:

Fx(k) = P(X < k) = Ek:P(x =i).
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Continuous Distribution

@ The Normal distribution is commonly used to model
natural phenomena, such as income or test scores,
where data tends to cluster around a central value. A8 Eaual Halves
Example: The income of HH in Boston area has o
mean p = 95k and standard deviation o = 8k.

@ The probability density function (PDF) is:

fx(x) = . exp (—(X_M)z>

021 202

o CDF: The CDF of the normal distribution is given
by:

+lo +20 +30

Fx(x) = /X i (t) dt.

0 No. of standard deviations from the mean

and represents the area under fx for X < x.
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Expectated Value and Its Properties

- Discrete:
E[X] =) xP(x)
- Continuous:

E[X] = /Xf(x)dx

o Properties of Expectation:
e Linearity: E(aX + b) = aE(X)+ b
o Additivity: E(X + Y) = E(X) + E(Y)
e For independent random variables X and Y, E(XY) = E(X)E(Y)

o Expectation of a Function: For a function (non random) g(X), the expectation is:

E(g(X)) = /Oo g(x)fx(x) dx (continuous)

oo

E(g(X)) =) _g(x)P(X =x) (discrete)
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Probability as an Expectation

o Indicator Function: Define the indicator function /4 for an event A, where:

1 if event A occurs
Ia = )
0 otherwise

o Expectation of Indicator Function: The expected value of the indicator function I, is:
E(la) = P(A)

This means the expectation of an indicator function is equal to the probability of the event
occurring.
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Variance

@ Variance measures the spread of a random variable around its mean:

Var(X) = E[(X — E(X))?] = E(X?) — (E(X))?

Properties of Variance:

o For any constant a and random variable X, Var(aX + b) = a*Var(X)
o For independent random variables X and Y, Var(X + Y) = Var(X) + Var(Y)
e For non-independent random variables X and Y, Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

Standard Deviation: ox = /Var(X)
Coefficient of Variation:

cv=2%

Hx
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Example with a discrete random variable

o Example: Let X be a discrete random variable with the following probability mass function (PMF):
P(X=0)=02, P(X=1)=05  P(X=2)=03.

e Mean (Expected Value): The mean is given by E[X] =) x - P(X = x) For this example:
E[X]=0:02+1-05+2-03=0+0.5+0.6=1.1.

e Variance: The variance is given by Var(X) = E[X?] — (E[X])? where E[X?] is the expected value
of the square of X:

EX? =Y 5 P(X =x).
For this example:
E[X?]=0%-02+12-05+22-03=0+05+12=1.7.
Now, we can calculate the variance:
Var(X) = 1.7 — (1.1)> = 1.7 — 1.21 = 0.49.
(T e e St L)



Covariance

Covariance measures the joint variability of two random variables X and Y:
Cov(X, ¥) = E[(X — E())(Y — E(Y))] = E(XY) — E(X)E(Y)

Properties of Covariance:
@ Positive covariance indicates that X and Y tend to move in the same direction.
@ Negative covariance indicates that X and Y tend to move in opposite directions.
If X and Y are independent, Cov(X, Y) =0, but Cov(X, Y) = 0 does not imply independence.
ov(X,a)=0
(X, X) = Var(X)
(X,Y) = Cov(Y,X)
v(aX bY) = abCov(X,Y)
(
ov(

ov

ov

ov(aX + bY,cW + dZ) = acCov(X, W) + adCov(X, Z) + bcCov(Y, W) + bdCov(Y, Z)
X,Y)=0— E[XY] = E[X]E[Y]
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Correlation

@ Correlation is the normalized measure of the linear

p=-1 ‘ -1<p <0
relationship between X and Y:
Cov(X,Y
Corr(X, ) = — X Y) gy ! |
Var(X)Var(Y)
0< p <+1 p=+1 p=0

@ Interpretation:
e p > 0: Positive linear relationship.
e p < 0: Negative linear relationship.
e p = 0: No linear relationship.
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Joint Distributions

e Joint PMF (Probability Mass Function): The joint PMF p(x, y) gives the probability that two
discrete random variables (X, Y)take specific values (x, y) simultaneously.

o Example (Discrete Case): Consider the following joint PMF for X and Y:

p(x,y) =

0.2 if(x,y)=(1,1)
0.3 if(x,y)=(1,2)
0.1 if (x,y)=(2,1)
04 if(x,y)=1(2,2)

e Finding the Marginal PMF of X: To find px(1), sum the joint probabilities for all values of y

where x = 1:

px(1) = p(1,1) + p(1,2) = 0.2+ 0.3 = 0.5

Similarly, for x = 2:

px(2) = p(2.1) + p(2,2) = 0.1 + 0.4 = 0.5
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Bivariate Normal Distribution

The joint pdf of a bivariate normal random variable (X, Y)

) = wagylﬂ exp <_ . ! - l(x ;Xux>2 X ” “;3((fyy —m) (y ;YMY)ZD

1
IS

e
w

where:
@ [ix,py are the means of X and Y,
@ ox,o0y are the standard deviations of X and Y,
@ p is the correlation coefficient between X and Y,
o f(x,y) is the joint PDF of X and Y.

Bivariate Normal PDF f(x,y)
° o
- N

o
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~_Reviewof Probability |
Conditional Distribution

e Conditional PDF: The conditional probability density function (PDF) of a continuous random
variable Y given X = x is defined as:

Joint pdf of (X)Y)  fx v(x,y)

Marginal pdf of X~ fx(x)

fyix(y|x) =

o Conditional Normal Distribution of Y given
X =x:

Conditional distributions at cuts

g
pvix = ELYIX = x] = py + p_ = (x = px)

U2YIX =Var(Y|X = x) = 02 (1 — p?)

Thus, the conditional PDF of Y given X = x is: ui /. /“/
1 (y — Ky X)2 j‘;-v.-?_“j - ’4 _,'A;
frix(ylx) = 72@@ (‘M W, T,
z/ 2’/TCTYlX Y|X 3
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Conditional Expectation

o Definition of Conditional Expectation: The conditional expectation is the expected value of a
random variable Y given another random variable X = x is:

E(Y|X =x)=>_yPr(Y =y|X =x)

for discrete random variables, or

E(Y|X = x) :/

oo

vy x(y|x)dy
for continuous random variables.
o Conditional Expectation as a Random Variable:
h(x) = E(Y|X = x)

As x changes, the conditional distribution of Y given X = x typically changes as well, and so might
the conditional expectation of Y given X = x. So we can view E[Y|X = x] as a function of x.
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Conditional Expectation: Example (Continued)

@ By definition of conditional expectation:
ElYIX=1]=1-Pr(Y=1X=1)4+2-Pr(Y =2|X=1)
@ First, compute the conditional PMF Pr(Y = y|X =1) for X = 1:

Pr(Y=1,X=1) 02

Pr(Y = LX = 1IX = 1) = = m2 = = 5 =

0.4

Pr(Y =2,X=1) 03

PriY =2 X=1X=1="5x -1 ~ 05

0.6

Now, compute the conditional expectation E[Y|X = 1]:

E[YIX=1=1-Pr(Y =1X=1)4+2-Pr(Y =2[X=1)=1-04+2-06=16
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Properties of Conditional Expectation

o Linearity: Conditional expectation is linear. For random variables X and Y, and constants
a,beR:
E[aX + bY|Z] = aE[X|Z] + bE[Y|Z]

e Taking out what is known: For any non-random function h(-):
E[n(2)X|2] = h(2)E[X]|Z]
@ Independence: If X and Y are independent, then:
E[Y|X] = E[Y]

This means knowing X provides no additional information about Y.

o Law of Iterated Expectations (Adam’s Law): The expectation of a conditional expectation
equals the unconditional expectation:

Ey [Ex [X|Y]] = Ex[X]
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Properties of Conditional Expectation

@ Projection Theorem: For any non-random function h: X — R:
E[(Y — E[Y|X])h(X)] =0 for any function h(X)

This shows that the residual Y — E[Y]|X] is uncorrelated with any function of X.

e Conditional Expectation is the Best Predictor: E[Y|X] is the best predictor of Y given X in
terms of minimizing mean squared error (MSE):

E[Y[X] = argmin E[(Y — h(X))?]
MSE

e Decomposition:
Y= E[Y|X] +Y—E[Y|X]
—— ————

best prediction residual

Note that the two terms on the RHS are uncorrelated, by the projection theorem.
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Review of Statistical Inference

Sample Statistics
Law of Large Numbers, Central Limit Theorem
Hypothesis tests

Confidence Intervals.
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~___Review of Statistics |
Statistical Inference

Population

Collect4data from a

representative Sample...

Make an Inference
about the Population:
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Population and Sample

@ We are analyzing the relationship between the number of hours studied X and the test scores Y.

@ From the students population we collect a sample

Student

Hours Studied (X)

Test Score (Y)

1

g~ wwN

2

o O U1 W

50
60
75
80
90

@ the population variable X and Y have some distribution fx and fy, and they are related to each

other according to some joint distribution fx y.

@ We want to use the sample to infer the value of some population parameter: mean, variance,

correlation.
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Sample Statistics

e Sample Average (Mean) of X to estimate the population mean px :

=— =438
5 5

-_EZ”:X'_2+3+5+6+8_24
i=1

e Sample Variance of X to estimate the population variance o'%:

1 < - (2—-4.8)24 (3 —-4.8)2+ (5—4.8)>+ (6 —4.8)> + (8 — 4.8)?

2 2
E Xi— X)) = =5.04

-1 i:l( : 4

o Sample Correlation between X and Y to estimate the correlation px y:

Cov(X,Y) (X = X)(Yi = Y)

rxy = = 0.874
TUVEVS [ e X i (Y- V)
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The Law of Large Numbers (LLN)

o Definition: Given an i.i.d. sample (X1, Xz, ..., X;;)

0.35
with E[X;] = 1 and Var[X;] = 02 < oo, the sample 00
mean converges in probability to the expected E ’
value p g O
1 n p g 0.20
. — A
i 25 ol S
i=1 2
E 0.10
o Intuition: Suppose that we are interested in the 8 105
probability of obtaining 6 when rolling a dice. Let 0.00
X; =1 if we get 6 and X; = 0 otherwise. Consider 0 1000 2000 3000 4000 5000
the sample mean X = 23" | X;. If you perform an Number of tosses
experiment (ro” a dice) Wlth a Iarge number of You can see from the figure that after approximately 1500 throws, the

blue relative frequency has stabilized very close to the actual

trials, the value of X converges to the expected

. -1 probability in black.
value of X; (which is g).
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The Central Limit Theorem (CLT)

o Definition: Let (Xy, Xp, ..., X;;) be an i.i.d. sample
of size n from a population with with E[X;] = 1 and
Var[X;] = 0 < co. The Central Limit Theorem
states that the distribution of the sample mean X, Sample Size =2 Sample Size = 4

will approach a Normal distribution as the sample % .

size n increases, regardless of the original

Frequency
0 800

Frequency
0 600
[N

population’s distribution. In other words the sample o 5 10 15 20 25 o 5 10 15 20 25
mean converges in distribution to a Normal
d IStrI bUthn Sample Size = 30 Sample Size =100
2 3 z
- d o g g g g
X,,—>/\/'(,u,> as n— oo v&é L ;«j ‘
n w ° —r T 1T T T 1 e T 1T T 1T 1T 1

)
2

0 5§ 10 15 20 25 30 10 15 20 25 30

or equivalently
_Xo—p
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Hypothesis Testing

A statistical hypothesis is a claim (null hypothesis Hp) about the value of a population parameter.

@ The objective of hypothesis testing is to decide, based on sample information, if the alternative
hypotheses is actually supported by the data.

@ The burden of proof is placed on those who believe in the alternative claim (alternative hypothesis
H,). In other words the null hypothesis Hy is assumed to be true.

e This initially favored claim (Hp) is rejected in favor of the alternative claim (H,) if the sample
evidence provides significant support for the alternative assertion.

o If the sample does not strongly contradict Hp, we continue to believe in the plausibility of the null
hypothesis.
@ The two possible conclusions:
1) Reject Ho.
2) Fail to reject Ho.
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Hypothesis Testing Procedure

A statistical hypothesis test is a method of statistical inference used to decide whether the data
sufficiently supports a particular hypothesis. The general steps in hypothesis testing are:
@ State the hypotheses:

o Null hypothesis (Ho): assumed to be true
o Alternative hypothesis (H.): invalidates the null hypothesis

@ Choose the significance level («):

e The significance level () represents the probability of rejecting the null hypothesis when it is true. A
commonly used value is 0.05.

© Compute the test statistic:

e The test statistic z is a numerical value calculated from the sample data that measures the degree of
agreement between the null hypothesis and the sample data.

@ Compare with the critical value: If the test statistic exceeds the critical value, reject Hy,
otherwise, fail to reject Hp.
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Hypothesis Test Outcomes

Errors in Hypothesis Testing:

@ A type | error is when Hy is rejected, but
it is true. Let
a = Pr(reject Hp | Hp is true)

o A type Il error is not rejecting Hy when

Decision Hy is false. Let
Retain H, Reject Hy B = Pr(fail to reject Ho | Ho is false)
Hj true Vv Type I error | Size and Power of a Test:
(false positive) o If o | then B 1, and viceversa. In other
H, true Type II error \/ words, No rejection region can be
(false negative) changed to simultaneously make both «

and (3 smaller.

@ « is also called significant level of a test.
Typical levels are .10, .05, and .01.

o m=1— 3 is called power of a test
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Alternative Hypothesis and Rejection Region

Given the Null hypothesis:
Ho @ pp = po
and the i.i.d. sample (x1, x2, ..., Xp), compute the test statistics z. Reject Hp if the test statistics z falls
in the Rejection Region.
z € Rejection Region

The size and shape of the Rejection Region is determined by the alternative hypothesis H, and the
significance level a.

Alternative Hypothesis: Rejection Region for Level o Test:
o Hy:p> o @ z > z, (upper tailed test)
o Hy:p < po o z < —z, (lower tailed test)
o Hy:p# o © z< —2z,/50r z> 2,5 (two tailed test)
e e
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Rejection Regions

The test statistics z is a function of the sample (which is a set of random variables) and therefore
itself a random variable with some distribution.

S

z curve (probability distribution of test statistic Z when H, is true)

Total shaded area
= a = P(type I error)

Shaded area
=a = P(type L error) g Shaded area _ Shaded
/ =al2 / \area = a/2

0z 1 2 0 T “Zap 0 Zaf2 I

Rejection region: 2 = —z, Rejection region: either
Rejection region: z = z,, TZZapOrz= —2Z4p
(a) (b) (c)
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Example

@ An inventor has developed a new, energy-efficient lawn mower engine.

@ The leading brand lawnmower engine runs for 300 minutes on 1 gallon of gasoline

@ He claims that the engine will run continuously for more than 5 hours (300 minutes) on a single
gallon of regular gasoline.

Ho : p =300min wvs. H,:p > 300min

@ From his stock of engines, the inventor selects a simple random sample of 50 engines for testing.
@ The engines run for an average of 305 minutes — X = 305. Suppose that the standard deviation is
known (o = 30). Suppose that the run times of the engines are normally distributed

_ X — o
o/v/n

@ Objective: Test hypothesis that the mean run time is more than 300 minutes. Use a 0.05 level of
significance. Reject p = 300min if

z

~ N(0,1)

_ 305300
730/\/5»0 0.05
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The p-value of a Test

zcurve

/Vﬂ\~\ P-value = area in upper tail
. Upper-tailed test / —1- 0@
p-value: The probability of observing a test statistic """ """ _ A 4
at least as extreme as the one computed, under the 0 caonhea
assumption that Hy is true.
Interpretation: p-value in the area under the pdf  ame
above the above (if upper tailed) or below (if lower T — B //— \\
tailed) the observed value of the test-statistic. Fasontalnsibelioequaliyy< ( N
Decision Rule can also be written as: CMCUT]M: 0
e p-value < a: Reject Ho.
e p-value > «a: Fail to reject Hp. P-value = sum of area in two tails = 2[1 -~ P(izD)]

zcurve

The p-value can be thought of as the smallest
significance level at which Hy can be rejected.

3. Two-tailed test
H, contains the inequality #

So, the smaller the p-value, the more evidence there
is in the sample data against the null hypothesis and Calculated 7, -
in favor of the alternative hypothesis.
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Confidence Intervals

@ Recall that, by the CLT, the sample mean, X , can be regarded as being normally distributed with

mean g and standard deviation % when n is large enough.

o Confidence Interval (Cl): A range of values where the true parameter is expected to lie with a

certain probability.
Cl = Point Estimate £ Margin of Error.

@ Suppose we want to construct a 100(1 — &)% CI for the mean run time. This is equivalent to

finding a value ¢ such that Pr(X —pl<d)=1—a.
which is equivalent to
0 0
P(Z< ——)-Pr(Z<——-F=)=1—-aq.
r( <0/ﬁ) r(Z < a/ﬁ) a
where Z = X~ is the standard normal distribution.

a/v/n
@ The point that satisfies this condition is denoted as z;_,/» — 0 = Z17a/2%
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Zi_q/2 is the 1 — a/2th quantile of Z. Because Z is symmetric about 0, we immediately know that

1 — /2 of the area under the standard normal curve lies to the left of - z;_ />, and 1 — /2 of the area
under the standard normal curve lies to the right of z;_, /> (For example, if 1 — a = 95%, then

—2Z0.975 = 20.025)

< < <
3 3 3
« | @ « |
g g g
N N I
g L g
5 5 5
99%; z= 2.58 95%; z= 1.96 90%; z= 1.645
o o o
o h o 1 o h
4 2 0 2 4 4 2 0 2 4 4 2 0 2 4
4 z z

and the Cl is given by

— g — ag
X =21 aqp—F— X+ A-a/2 7=

Vi v
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Confidence Levels

Suppose that 100(1 — «)% = 95%. What is the thing that has a 95% chance to happen?

red Cls miss p
the density of the sample,
mean is N(u,0/+/n)

About 95% of the intervals constructed following the procedure (taking a SRS and then calculating
X+ Za/Z%) will cover the true population mean u.
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Remarks

Notice that

° 2
- (5527

- 0 decreases (i.e. we require greater precision); or
- o increases (i.e. there is more dispersion in the population); or
- « decreases (i.e. we require greater accuracy).

thus the sample size n must increase if:

@ if o is unknown, we need to estimate it using the the sample std S. The procedure to construct the
Cl is the same, but we nee to replace o with S, and

_X—p
~S/vn

no longer has a standard normal distribution, but rather a Student’s t distribution with (n — 1)
degrees of freedom.

T
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