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Basic Idea of Causal Inference

Social science (Economics) theories always ask causal questions.
In general, a typical causal question is:

The effect of a treatment (X) on an outcome (Y).
Outcome (Y): A variable that we are interested in.
Treatment (X): A variable that has the (causal) effect on the outcome of our interest.
The best way to address this question is conducting a Randomized Controlled Experiment:

Treatment group: Receives a treatment.
Control group: Does not receive the treatment.

the two groups are identically equal except for being treated or non-treated.
Outcome of Interest:

∆Y = Outcome for treated individuals(Y1)− Outcome for control individuals(Y0)
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Example: Fertilizer and Crop Yield

Description:
A randomized trial is conducted to evaluate the effect of a new fertilizer on crop yield.
Farmers are randomly assigned to:

Treatment group: Use the new fertilizer.
Control group: Use traditional farming methods without the new fertilizer.

Findings:
Average crop yield increased by 15% in the treatment group compared to the control group.

Why Randomization Works:
Ensures that treated and control groups are similar in observed and unobserved characteristics
(e.g., soil quality, farmer skills).
Any difference in yield is attributable to the fertilizer.
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Randomized Experiments in Econometrics

Randomized Experiments are often not feasible
Practical constraints
Confounding Factors

Quasi-Experimental Methods:
Difference-in-Differences (DiD):

Compares pre- and post-treatment outcomes between treated and control groups.

Instrumental Variables (IV):
Uses an external factor (instrument) that affects treatment assignment but not the outcome directly
(e.g., weather patterns influencing fertilizer adoption).

Regression Discontinuity (RD):
Exploits a cutoff rule for treatment assignment (e.g., subsidies based on farm size thresholds).

Propensity Score Matching (PSM):
Matches treated and control units with similar observed characteristics (e.g., similar soil quality and
farm size).
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Example: Using Difference-in-Differences

Study: Impact of Fertilizer Subsidy on Crop Yield
Government introduces a fertilizer subsidy for small farmers in one region (treatment group) but
not in another region (control group).
Compare crop yields before and after the subsidy.

Why This is Quasi-Experimental:
No randomization of the subsidy.
farmers may differ in observable and unobservable characteristics that can affect both treatment
assignment and crop yield.
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Potential Confounding Factors in Crop Yield Example

Potential Confounding Factors:
Soil Quality:

Fields with better soil naturally have higher yields (Y ).
Farmers with lower-quality soil may be more likely to invest in fertilizer (X ).

Sunlight Exposure:
Fields with better sunlight exposure have higher productivity (Y ).
Sunlight exposure is often unobserved and may vary systematically across regions.

Technology and Farming Practices:
Farmers who receive fertilizer may also have access to better technology or irrigation systems (Z).
Improved technology directly affects crop yield (Y ), creating a spurious correlation between X and Y .

Why These Factors Matter:
Ignoring these confounders leads to biased estimates of the fertilizer’s effect.
The observed increase in crop yield may not solely result from the fertilizer.
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What is Econometrics?

Econometrics combines economics, mathematics, and statistics.
It aims to answer questions like:

Does an increase in education lead to higher earnings? (Causality)
How do changes in policy affect economic outcomes? (Policy Evaluation)
What factors predict a country’s GDP growth? (Prediction)

Ideally, we would like an Randomized Controlled Experiment, but almost always we only have
observational (non-experimental) data.
Issue to estimate causal effects with non-experimental data:

- confounding effects (omitted factors)
- selection-bias
- simultaneous causality
- “correlation does not imply causation”
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Objective of this Course

Key Questions:
Correlation vs Causation: How to determine causal relationships.
Endogeneity: When explanatory variables are correlated with the error term.
Model Selection: Choosing the appropriate model for analysis.
Interpretation: Translating results into meaningful economic insights.

Topics
Ordinary Least Squares
Issues with OLS: Omitted Variables, Heteroskedasticity, Simultaneity
Instrumental Variables
Bianary Dependent Variables (Logistic Regression) and Poisson Regression
Generalized Method of Moments
Panel Data Methods
Treatment Effects (Difference in Difference and Regression Discontinuity)
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Review of Probability
Random Variables and Distributions
Expected Value and its Properties
Variance, Covariance and Correlation
Joint Distribution, Conditional Distribution
Conditional Expectation
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Review of Probability

Random Variables

A random variable is a variable whose value is determined by a random process.
Types of random variables:

Discrete: Can take only discrete values (e.g., number of students in a class).
Continuous: Can take any value in a range (e.g., height, weight).

Examples:
Discrete: Number of heads in 10 coin flips.
Continuous: Temperature in a city over a day.

The Probability that a random variable X takes a specific value (X = x) is defined by its
probability distribution function (PDF) fX (x).
The probability that a random variable X takes values below x is given by the Cumulative
Probability Density Function FX (x) which corresponds to the area under the PDF.
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Review of Probability

Let Y be a random variable that represents the per-capita income
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Review of Probability

Discrete Distribution

Example: the Binomial distribution models the
number of successes (k) in a fixed number of
independent Bernoulli trials (n), each with a
probability p of success. For example: The number
of heads when flipping 3 coins.
The probability mass function (PMF) is:

P(X = k) =

(
n

k

)
pk(1 − p)n−k , k = 0, 1, . . . , n

CDF: The CDF is the cumulative sum of the PMF:

FX (k) = P(X ≤ k) =
k∑

i=0

P(X = i).
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Review of Probability

Continuous Distribution

The Normal distribution is commonly used to model
natural phenomena, such as income or test scores,
where data tends to cluster around a central value.
Example: The income of HH in Boston area has
mean µ = 95k and standard deviation σ = 8k .
The probability density function (PDF) is:

fX (x) =
1

σ
√

2π
exp

(
− (x − µ)2

2σ2

)
CDF: The CDF of the normal distribution is given
by:

FX (x) =

∫ x

−∞
fX (t) dt.

and represents the area under fX for X ≤ x .

Econometric Methods| Cappello | Spring’25 Introduction 13 / 43



Review of Probability

Expectated Value and Its Properties

- Discrete:
E [X ] =

∑
xP(x)

- Continuous:
E [X ] =

∫
xf (x)dx

Properties of Expectation:
Linearity: E(aX + b) = aE(X ) + b
Additivity: E(X + Y ) = E(X ) + E(Y )
For independent random variables X and Y , E(XY ) = E(X )E(Y )

Expectation of a Function: For a function (non random) g(X ), the expectation is:

E (g(X )) =

∫ ∞

−∞
g(x)fX (x) dx (continuous)

E (g(X )) =
∑
x

g(x)P(X = x) (discrete)
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Review of Probability

Probability as an Expectation

Indicator Function: Define the indicator function IA for an event A, where:

IA =

{
1 if event A occurs
0 otherwise

Expectation of Indicator Function: The expected value of the indicator function IA is:

E (IA) = P(A)

This means the expectation of an indicator function is equal to the probability of the event
occurring.
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Review of Probability

Variance

Variance measures the spread of a random variable around its mean:

Var(X ) = E [(X − E (X ))2] = E (X 2)− (E (X ))2

Properties of Variance:
For any constant a and random variable X , Var(aX + b) = a2Var(X )
For independent random variables X and Y , Var(X + Y ) = Var(X ) + Var(Y )
For non-independent random variables X and Y , Var(X + Y ) = Var(X ) + Var(Y ) + 2Cov(X ,Y )

Standard Deviation: σX =
√
Var(X )

Coefficient of Variation:
CV =

σX

µX
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Review of Probability

Example with a discrete random variable

Example: Let X be a discrete random variable with the following probability mass function (PMF):

P(X = 0) = 0.2, P(X = 1) = 0.5, P(X = 2) = 0.3.

Mean (Expected Value): The mean is given by E [X ] =
∑

x x · P(X = x) For this example:

E [X ] = 0 · 0.2 + 1 · 0.5 + 2 · 0.3 = 0 + 0.5 + 0.6 = 1.1.

Variance: The variance is given by Var(X ) = E [X 2]− (E [X ])2 where E [X 2] is the expected value
of the square of X :

E [X 2] =
∑
x

x2 · P(X = x).

For this example:

E [X 2] = 02 · 0.2 + 12 · 0.5 + 22 · 0.3 = 0 + 0.5 + 1.2 = 1.7.

Now, we can calculate the variance:

Var(X ) = 1.7 − (1.1)2 = 1.7 − 1.21 = 0.49.
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Review of Probability

Covariance

Covariance measures the joint variability of two random variables X and Y :

Cov(X ,Y ) = E [(X − E (X ))(Y − E (Y ))] = E (XY )− E (X )E (Y )

Properties of Covariance:
Positive covariance indicates that X and Y tend to move in the same direction.
Negative covariance indicates that X and Y tend to move in opposite directions.
If X and Y are independent, Cov(X ,Y ) = 0, but Cov(X ,Y ) = 0 does not imply independence.
Cov(X , a) = 0
Cov(X ,X ) = Var(X )

Cov(X ,Y ) = Cov(Y ,X )

Cov(aX , bY ) = abCov(X ,Y )

Cov(aX + bY , cW + dZ ) = acCov(X ,W ) + adCov(X ,Z ) + bcCov(Y ,W ) + bdCov(Y ,Z )

Cov(X ,Y ) = 0 → E [XY ] = E [X ]E [Y ]
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Review of Probability

Correlation

Correlation is the normalized measure of the linear
relationship between X and Y :

Corr(X ,Y ) =
Cov(X ,Y )√
Var(X )Var(Y )

∈ [−1, 1]

Interpretation:
ρ > 0: Positive linear relationship.
ρ < 0: Negative linear relationship.
ρ = 0: No linear relationship.
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Review of Probability

Joint Distributions

Joint PMF (Probability Mass Function): The joint PMF p(x , y) gives the probability that two
discrete random variables (X ,Y )take specific values (x , y) simultaneously.
Example (Discrete Case): Consider the following joint PMF for X and Y :

p(x , y) =


0.2 if (x , y) = (1, 1)
0.3 if (x , y) = (1, 2)
0.1 if (x , y) = (2, 1)
0.4 if (x , y) = (2, 2)

Finding the Marginal PMF of X : To find pX (1), sum the joint probabilities for all values of y
where x = 1:

pX (1) = p(1, 1) + p(1, 2) = 0.2 + 0.3 = 0.5

Similarly, for x = 2:
pX (2) = p(2, 1) + p(2, 2) = 0.1 + 0.4 = 0.5
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Review of Probability

Bivariate Normal Distribution

The joint pdf of a bivariate normal random variable (X ,Y )

f (x , y) =
1

2πσXσY

√
1 − ρ2

exp

(
− 1

2(1 − ρ2)

[(
x − µx

σX

)2

− 2ρ
(x − µx)(y − µy )

σxσy
+

(
y − µY

σY

)2
])

where:
µX , µY are the means of X and Y ,
σX , σY are the standard deviations of X and Y ,
ρ is the correlation coefficient between X and Y ,
f (x , y) is the joint PDF of X and Y .
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Review of Probability

Conditional Distribution

Conditional PDF: The conditional probability density function (PDF) of a continuous random
variable Y given X = x is defined as:

fY |X (y |x) =
Joint pdf of (X,Y)
Marginal pdf of X

=
fX ,Y (x , y)

fX (x)

Conditional Normal Distribution of Y given
X = x :

µY |X = E [Y |X = x ] = µY + ρ
σY

σX
(x − µX )

σ2
Y |X = Var(Y |X = x) = σ2

Y (1 − ρ2)

Thus, the conditional PDF of Y given X = x is:

fY |X (y |x) =
1√

2πσ2
Y |X

exp

(
−
(y − µY |X )

2

2σ2
Y |X

)
Econometric Methods| Cappello | Spring’25 Introduction 22 / 43



Review of Probability

Conditional Expectation

Definition of Conditional Expectation: The conditional expectation is the expected value of a
random variable Y given another random variable X = x is:

E (Y |X = x) =
∑
y

yPr(Y = y |X = x)

for discrete random variables, or

E (Y |X = x) =

∫ ∞

−∞
yfY |X (y |x)dy

for continuous random variables.
Conditional Expectation as a Random Variable:

h(x) = E (Y |X = x)

As x changes, the conditional distribution of Y given X = x typically changes as well, and so might
the conditional expectation of Y given X = x . So we can view E [Y |X = x ] as a function of x .

Econometric Methods| Cappello | Spring’25 Introduction 23 / 43



Review of Probability

Conditional Expectation: Example (Continued)

By definition of conditional expectation:

E [Y |X = 1] = 1 · Pr(Y = 1|X = 1) + 2 · Pr(Y = 2|X = 1)

First, compute the conditional PMF Pr(Y = y |X = 1) for X = 1:

Pr(Y = 1,X = 1|X = 1) =
Pr(Y = 1,X = 1)

Pr(X = 1)
=

0.2
0.5

= 0.4

Pr(Y = 2,X = 1|X = 1) =
Pr(Y = 2,X = 1)

Pr(X = 1)
=

0.3
0.5

= 0.6

Now, compute the conditional expectation E [Y |X = 1]:

E [Y |X = 1] = 1 · Pr(Y = 1|X = 1) + 2 · Pr(Y = 2|X = 1) = 1 · 0.4 + 2 · 0.6 = 1.6
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Review of Probability

Properties of Conditional Expectation

Linearity: Conditional expectation is linear. For random variables X and Y , and constants
a, b ∈ R:

E [aX + bY |Z ] = aE [X |Z ] + bE [Y |Z ]

Taking out what is known: For any non-random function h(·):

E [h(Z )X |Z ] = h(Z )E [X |Z ]

Independence: If X and Y are independent, then:

E [Y |X ] = E [Y ]

This means knowing X provides no additional information about Y .
Law of Iterated Expectations (Adam’s Law): The expectation of a conditional expectation
equals the unconditional expectation:

EY [EX [X |Y ]] = EX [X ]
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Review of Probability

Properties of Conditional Expectation

Projection Theorem: For any non-random function h : X → R:

E [(Y − E [Y |X ])h(X )] = 0 for any function h(X )

This shows that the residual Y − E [Y |X ] is uncorrelated with any function of X .
Conditional Expectation is the Best Predictor: E [Y |X ] is the best predictor of Y given X in
terms of minimizing mean squared error (MSE):

E [Y |X ] = argmin
h

E [(Y − h(X ))2]︸ ︷︷ ︸
MSE

Decomposition:
Y = E [Y |X ]︸ ︷︷ ︸

best prediction

+Y − E [Y |X ]︸ ︷︷ ︸
residual

Note that the two terms on the RHS are uncorrelated, by the projection theorem.
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Review of Statistics

Review of Statistical Inference
Sample Statistics
Law of Large Numbers, Central Limit Theorem
Hypothesis tests
Confidence Intervals.
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Review of Statistics

Statistical Inference
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Review of Statistics

Population and Sample

We are analyzing the relationship between the number of hours studied X and the test scores Y.
From the students population we collect a sample

Student Hours Studied (X) Test Score (Y)
1 2 50
2 3 60
3 5 75
4 6 80
5 8 90

the population variable X and Y have some distribution fX and fY , and they are related to each
other according to some joint distribution fX ,Y .
We want to use the sample to infer the value of some population parameter: mean, variance,
correlation.
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Review of Statistics

Sample Statistics

Sample Average (Mean) of X to estimate the population mean µX :

X̄ =
1
n

n∑
i=1

Xi =
2 + 3 + 5 + 6 + 8

5
=

24
5

= 4.8

Sample Variance of X to estimate the population variance σ2
X :

S2
X =

1
n − 1

n∑
i=1

(Xi − X̄ )2 =
(2 − 4.8)2 + (3 − 4.8)2 + (5 − 4.8)2 + (6 − 4.8)2 + (8 − 4.8)2

4
= 5.04

Sample Correlation between X and Y to estimate the correlation ρX ,Y :

rXY =
Cov(X ,Y )√

S2
X

√
S2
Y

=
1
n

∑n
i=1(Xi − X̄ )(Yi − Ȳ )√

1
n−1

∑n
i=1(Xi − X̄ )2 1

n−1

∑n
i=1(Yi − Ȳ )2

= 0.874
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Review of Statistics

The Law of Large Numbers (LLN)

Definition: Given an i.i.d. sample (X1,X2, ...,Xn)
with E[Xi ] = µ and Var [Xi ] = σ2 < ∞, the sample
mean converges in probability to the expected
value µ

lim
n→∞

1
n

n∑
i=1

Xi
p−→ µ

Intuition: Suppose that we are interested in the
probability of obtaining 6 when rolling a dice. Let
Xi = 1 if we get 6 and Xi = 0 otherwise. Consider
the sample mean X = 1

n

∑n
i=1 Xi . If you perform an

experiment (roll a dice) with a large number of
trials, the value of X converges to the expected
value of Xi (which is 1

6 ).
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Review of Statistics

The Central Limit Theorem (CLT)

Definition: Let (X1,X2, ...,Xn) be an i.i.d. sample
of size n from a population with with E[Xi ] = µ and
Var [Xi ] = σ2 < ∞. The Central Limit Theorem
states that the distribution of the sample mean X̄n

will approach a Normal distribution as the sample
size n increases, regardless of the original
population’s distribution. In other words the sample
mean converges in distribution to a Normal
distribution

X̄n
d−→ N

(
µ,

σ2

n

)
as n → ∞

or equivalently

Z =
X̄n − µ

σ/
√
n

d−→ N (0, 1) as n → ∞
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Review of Statistics

Hypothesis Testing

A statistical hypothesis is a claim (null hypothesis H0) about the value of a population parameter.
The objective of hypothesis testing is to decide, based on sample information, if the alternative
hypotheses is actually supported by the data.
The burden of proof is placed on those who believe in the alternative claim (alternative hypothesis
Ha). In other words the null hypothesis H0 is assumed to be true.
This initially favored claim (H0) is rejected in favor of the alternative claim (Ha) if the sample
evidence provides significant support for the alternative assertion.
If the sample does not strongly contradict H0, we continue to believe in the plausibility of the null
hypothesis.
The two possible conclusions:

1) Reject H0.
2) Fail to reject H0.
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Review of Statistics

Hypothesis Testing Procedure

A statistical hypothesis test is a method of statistical inference used to decide whether the data
sufficiently supports a particular hypothesis. The general steps in hypothesis testing are:

1 State the hypotheses:
Null hypothesis (H0): assumed to be true
Alternative hypothesis (Ha): invalidates the null hypothesis

2 Choose the significance level (α):
The significance level (α) represents the probability of rejecting the null hypothesis when it is true. A
commonly used value is 0.05.

3 Compute the test statistic:
The test statistic z is a numerical value calculated from the sample data that measures the degree of
agreement between the null hypothesis and the sample data.

4 Compare with the critical value: If the test statistic exceeds the critical value, reject H0,
otherwise, fail to reject H0.
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Review of Statistics

Hypothesis Test Outcomes

Errors in Hypothesis Testing:
A type I error is when H0 is rejected, but
it is true. Let
α = Pr(reject H0 | H0 is true)
A type II error is not rejecting H0 when
H0 is false. Let
β = Pr(fail to reject H0 | H0 is false)

Size and Power of a Test:
If α ↓ then β ↑, and viceversa. In other
words, No rejection region can be
changed to simultaneously make both α
and β smaller.
α is also called significant level of a test.
Typical levels are .10, .05, and .01.
π = 1 − β is called power of a test
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Review of Statistics

Alternative Hypothesis and Rejection Region

Given the Null hypothesis:
H0 : µ = µ0

and the i.i.d. sample (x1, x2, ..., xn), compute the test statistics z . Reject H0 if the test statistics z falls
in the Rejection Region.

z ∈ Rejection Region

The size and shape of the Rejection Region is determined by the alternative hypothesis Ha and the
significance level α.

Alternative Hypothesis:
Ha : µ > µ0

Ha : µ < µ0

Ha : µ ̸= µ0

Rejection Region for Level α Test:
z ≥ zα (upper tailed test)
z ≤ −zα (lower tailed test)
z ≤ −zα/2 or z ≥ zα/2 (two tailed test)

Econometric Methods| Cappello | Spring’25 Introduction 36 / 43



Review of Statistics

Rejection Regions

The test statistics z is a function of the sample (which is a set of random variables) and therefore is
itself a random variable with some distribution.
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Review of Statistics

Example

An inventor has developed a new, energy-efficient lawn mower engine.
The leading brand lawnmower engine runs for 300 minutes on 1 gallon of gasoline
He claims that the engine will run continuously for more than 5 hours (300 minutes) on a single
gallon of regular gasoline.

H0 : µ = 300min vs. Ha : µ > 300min

From his stock of engines, the inventor selects a simple random sample of 50 engines for testing.
The engines run for an average of 305 minutes → X = 305. Suppose that the standard deviation is
known (σ = 30). Suppose that the run times of the engines are normally distributed

z =
X − µ0

σ/
√
n

∼ N(0, 1)

Objective: Test hypothesis that the mean run time is more than 300 minutes. Use a 0.05 level of
significance. Reject µ = 300min if

z =
305 − 300
30/

√
50

> z0.05
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Review of Statistics

The p-value of a Test

p-value: The probability of observing a test statistic
at least as extreme as the one computed, under the
assumption that H0 is true.
Interpretation: p-value in the area under the pdf
above the above (if upper tailed) or below (if lower
tailed) the observed value of the test-statistic.
Decision Rule can also be written as:

p-value < α: Reject H0.
p-value ≥ α: Fail to reject H0.

The p-value can be thought of as the smallest
significance level at which H0 can be rejected.
So, the smaller the p-value, the more evidence there
is in the sample data against the null hypothesis and
in favor of the alternative hypothesis.
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Review of Statistics

Confidence Intervals

Recall that, by the CLT, the sample mean, X , can be regarded as being normally distributed with
mean µ and standard deviation σ√

n
when n is large enough.

Confidence Interval (CI): A range of values where the true parameter is expected to lie with a
certain probability.

CI = Point Estimate ± Margin of Error.

Suppose we want to construct a 100(1 − α)% CI for the mean run time. This is equivalent to
finding a value δ such that Pr(|X − µ| ≤ δ) = 1 − α.

which is equivalent to

Pr(Z <
δ

σ/
√
n
)− Pr(Z < − δ

σ/
√
n
) = 1 − α.

where Z = X−µ
σ/

√
n

is the standard normal distribution.

The point that satisfies this condition is denoted as z1−α/2 → δ = z1−α/2
σ√
n
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Review of Statistics

z1−α/2 is the 1 − α/2th quantile of Z. Because Z is symmetric about 0, we immediately know that
1−α/2 of the area under the standard normal curve lies to the left of - z1−α/2, and 1−α/2 of the area
under the standard normal curve lies to the right of z1−α/2 (For example, if 1 − α = 95%, then
−z0.975 = z0.025)

and the CI is given by [
X − z1−α/2

σ√
n
,X + z1−α/2

σ√
n

]
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Review of Statistics

Confidence Levels

Suppose that 100(1 − α)% = 95%. What is the thing that has a 95% chance to happen?

About 95% of the intervals constructed following the procedure (taking a SRS and then calculating
X̄ ± Zα/2

σ√
n
) will cover the true population mean µ.
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Review of Statistics

Remarks

Notice that

n =
(z1−α/2

δ

)2
σ2

thus the sample size n must increase if:
- δ decreases (i.e. we require greater precision); or
- σ increases (i.e. there is more dispersion in the population); or
- α decreases (i.e. we require greater accuracy).

if σ is unknown, we need to estimate it using the the sample std S . The procedure to construct the
CI is the same, but we nee to replace σ with S , and

T =
X − µ

S/
√
n

no longer has a standard normal distribution, but rather a Student’s t distribution with (n − 1)
degrees of freedom.
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