
ECON3389 Econometric Methods

Module 2
Maximum Likelihood Estimation

Alberto Cappello

Department of Economics, Boston College

Spring 2025



Maximum Likelihood Estimation: Idea

Suppose X1,X2, ...,Xn form a random sample from a distribution for which the pdf is f (x |θ)

For every observed vector x = (x1, x2, ...., xn), we can define the joint pdf as follows

L(θ) = fn(x |θ) = f (x1|θ).f (x2|θ).f (x3|θ)...f (xn|θ) (1)

L(θ) is called the Likelihood Function
The MLE estimator of θ will find the parameter values that maximize L(θ)

In other words, it will find the parameter value that maximize the likelihood of the observed data
being drawn from f (x |θ)
Suppose x1, x2, ..., xn form a random sample from a normal distribution for which the mean µ is
unknown and variance σ2 is known
The likelihood function of µ is

L(µ) = fn(x |µ) =
n∏

i=1

1
σ
√

2π
exp−

(xi−µ)2

2σ2 (2)
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Maximum Likelihood Estimation: Example 1

Example: Suppose I toss a coin 100 times and get 56 heads. What is the MLE of the probability of
heads in a single toss?

Model: L(p) = L(p; n, x) =
(
n
x

)
px(1 − p)n−x =

(100
56

)
p56(1 − p)44

L(0.5) = 0.038
L(0.52) = 0.058
L(0.54) = 0.073
L(0.56) = 0.081
L(0.58) = 0.073
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Maximum Likelihood Estimation: Method

Method 1
In the previous example, it is easy for us to write a simple equation that describes the likelihood
surface that can be differentiated to find the MLE estimate

Step 1: Take the log

ln L = ln

(
100
56

)
+ ln(p56(1 − p)44) (3)

ln L = 56 ln(p) + 44 ln(1 − p) (4)
(5)

Step 2: Differentiate the log likelihood to find the optimal parameter

56
p

− 44
(1 − p)

= 0 (6)

56(1 − p)− 44p = 0 (7)

p =
56
100

(8)
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Maximum Likelihood Estimation: Method

Method 2
In the previous example, we used the information that sum of bernoullis follows a binomial distribution
to construct the overall likelihood surface

In many cases this might not be possible because we are not working with such distributions and the
model is at the level of individual coin tosses
In such cases we need to construct the overall likelihood surface using the individual likelihoods
Each individual coin toss follows a Bernoulli distribution. Suppose X = 1 when heads and 0 otherwise

L(p; x) = px(1 − p)1−x
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Maximum Likelihood Estimation: Method

Method 2: Remember the data is given to us

Observation Outcome (x) Likelihood of outcome

1 1 p
2 0 1-p
3 1 p
...
99 0 1-p
100 1 p

Total 56 ?

What is the overall/joint likelihood of entries in the second column?

Each coin toss is independent

L(p) = p.p.p.p..(1 − p)(1 − p)...(1 − p) (9)

L(p) = p56(1 − p)44 (10)

ln L(p) = ln(p56(1 − p)44) (11)
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OLS as a special case of MLE

Main assumption: The errors follow a normal distribution with mean 0 and variance σ2

ϵ ∼ N (0, σ2)

Yi = β0 + β1Xi + ϵi

ϵi = Yi − β0 − β1Xi

The likelihood function of (β) is

L(β) =
n∏

i=1

1
σ
√

2π
exp−

(yi−β0−β1xi )
2

2σ2

ln(L(β)) =
n∑

i=1

ln(
1

σ
√

2π
)−

n∑
i=1

(yi − β0 − β1xi )
2

2σ2

The first term does not depend on (β) and the second term has a constant σ2 that we can bring
outside the summation

ln(L(β)) = − 1
2σ2

n∑
i=1

(yi − β0 − β1xi )
2
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Maximum Likelihood Estimation

Because we no longer have a direct connection between Y and our structural component Xβ, we
need to specify our loss function in a different way. Using our link function, we can for every
observation i wright down the probability of observing a certain value of Yi given values of Xi

For example, for a logit model we have:

Pr(Y = Yi |Xi ) =

(
expXiβ

1 + expXiβ

)Yi (
1 − expXiβ

1 + expXiβ

)1−Yi

With the default assumption of i.i.d. observations we can wright down the joint probability or
likelihood function of seeing our sample:

ℓ(β) =
n∏

i=1

Pr(Y = Yi |Xi )
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Maximum Likelihood Estimation

Maximum likelihood estimation (ML) is a method that chooses parameters β so as to minimize the
loss function in form of the negative of the log likelihood function:

β̂ML = argmin
β

− ln ℓ(β)

Under some general conditions β̂ML is efficient, consistent and asymptotically normal, just like β̂OLS

But unlike OLS, ML is a more general estimation procedure and allows one to recover structural
parameters such as β in models that are far more flexible than standard MLR.
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