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Motivation

Estimation in MLR

We now have p explanatory variables X1,X2, . . . ,Xp:

Y = β0 · 1 + β1X1 + β2X2 + . . .+ βpXp + ϵ

Our sample is {yi , x1i , x2i , . . . , xpi}ni=1. Given estimates β̂0, β̂1, . . . , β̂p, our predicted (estimated)
outcome is

ŷi = β̂0 + β̂1x1i + β̂2x2i + . . .+ β̂pxpi

The same logic as in SLR leads us to OLS estimates as the ones that minimize RSS:

RSS(β̂0, β̂1, . . . , β̂p) =
n∑

i=1

(yi − ŷi )
2 → min

β̂0,β̂1,...,β̂p

Closed form solutions still exist, but they become cumbersome when usual scalar notation is used.
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Motivation

Matrix Notation

Y =


y1
y2
. . .
yn

 X =


1 x11 x21 . . . xp1
1 x12 x22 . . . xp2
. . . . . . . . . . . . . . .
1 x1n x2n . . . xpn

 β =


β0
β1
. . .
βp

 ϵ =


ϵ0
ϵ1
. . .
ϵn



Y = Xβ + ϵ Ŷ = X β̂ e = Y − Ŷ

Then RSS = e ′e and our OLS estimates are defined as

β̂OLS = argmin
β̂

RSS = (X ′X )
−1 X ′Y
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Motivation

Small sample properties

ZCM assumption ensures that OLS is unbiased:

E[β̂OLS |X ] = E
[
(X ′X )

−1 X ′Y |X
]
= (X ′X )

−1 X ′E [Y |X ] =

= (X ′X )
−1 X ′E [Xβ + ϵ|X ] = (X ′X )

−1 X ′X︸ ︷︷ ︸
= I

β + (X ′X )
−1 X ′E [ϵ|X ]︸ ︷︷ ︸

= 0

=

= β

If ϵ is homoscedastic with no serial correlation, then the variance of OLS is

Var [β̂OLS |X ] = Var
[
β + (X ′X )

−1 X ′ϵ|X
]
= Var

[
(X ′X )

−1 X ′ϵ|X
]
=

= (X ′X )
−1 X ′Var [ϵ|X ]

(
(X ′X )

−1 X ′
)′

= (X ′X )
−1 X ′(σ2I)X (X ′X )

−1
=

= σ2 (X ′X )
−1 X ′X (X ′X )

−1
= σ2 (X ′X )

−1
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Motivation

Small Sample Properties

Just like in SLR, under assumptions of E [ϵ|X ] = 0 and Var [ϵ|X ] = σ2I OLS is BLUE — has least
variance among all linear unbiased estimators.

If one assumes normality of the error term ϵ, OLS estimates have exact normal sampling distributions:

β̂OLS ∼ N
(
β, σ2 (X ′X )

−1
)

β̂OLS − βOLS

se(β̂OLS)
∼ tn−p−1

However, assuming normality of the error term is often just as unrealistic in MLR as in SLR. In
addition, unbiasedness only works with repeated samples, while we usually have access only to a
single sample.
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Motivation

Large Sample Properties (Asymptotics)

Good news — just like in SLR, OLS estimates in MLR are consistent

plim β̂OLS = plim
(
(X ′X )

−1 X ′Y
)
= plim

(
β + (X ′X )

−1 X ′ϵ
)
=

= β + plim

((
1
n
X ′X

)−1 1
n
X ′ϵ

)
= β + plim

((
1
n
X ′X

)−1
)

· plim
(

1
n
X ′ϵ

)
=

= β + E [X ′X ] · E [Xϵ] = β

and asymptotically normal

β̂OLS
d∼

n→∞
N
(
β,

σ2

n
(X ′X )

−1
)

√
n
(
β̂OLS − βOLS

)
d∼

n→∞
N
(
0, σ2 (X ′X )

−1
)
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Motivation

Statistical Inference

Standard t-test for significance can interpreted in the same way as in SLR
Results from example with advertising data, using all three variables:

Variable Coefficient SE t p-value
Intercept 2.939 0.3119 9.42 <0.0001
TV 0.046 0.0014 32.81 <0.0001
radio 0.189 0.0086 21.89 <0.0001
newspaper -0.001 0.0059 -0.18 <0.8599

Correlation matrix:
Variable TV radio newspaper sales
TV 1.0000 0.0548 0.0567 0.7822
radio 1.0000 0.3541 0.5762
newspaper 1.0000 0.2283
sales 1.00000
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Motivation

Statistical Inference

MLR offers much wider range of possible analysis avenues:
Is at least one of the predictors X1,X2, . . . ,Xp useful in predicting the response?
Do all the predictors help to explain Y , or is only a subset of the predictors useful?
How well does the model fit the data?
Given a set of predictor values, what response value should we predict, and how accurate is our
prediction?
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Motivation

F-test for linear restrictions

Standard significance tests only look at one variable at a time. What if we want to asses the joint
significance of several variables at once?
This means imposing multiple restrictions at once, e.g. k = 3 restrictions:

H0 : β1 = β4 = β5 = 0

The idea of an F-test is to compare how much worse our model’s fit gets once we impose those
restrictions and run OLS with them:

F =
(RSSr − RSSur )/k

RSSur/(n − k − 1)
=

(R2
ur − R2

r )/k

(1 − R2
ur )/(n − p − 1)

∼ Fk,n−p−1

If F > Fα
k,n−p−1, we reject H0 on significance level α.
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Motivation

Is at least one predictor useful?

This questions corresponds to special case of

H0 : β1 = β2 = . . . = βp = 0

In Econometrics this is known as regression significance test, and it is automatically performed for
every linear regression.
For our advertising data the result of this test is

R2 = 0.897, F = 570, p-value < 0.00001 ⇒ H0 is rejected
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Motivation

Which variables are important?

Generally we don’t have any knowledge as to which variables we should test for joint significance

We have lots of independent variables. We need to decide which is the best model? For our current
purposes best = highest Adj R squared
We have to decide two things: The number of variables to include in our model and which variables
are those?
The most direct approach is called best subsets regression: we compute OLS fit for all possible
subsets and then choose between them based on some criterion that balances training error with
model size.

But this is often not feasible, since they are 2p possible subsets of p regressors, e.g. with p = 40 there
are over a billion models!

Instead, the two most commonly used approaches are forward selection and backward selection.
We can also use statistics like Mallow’s Cp, Akaike information criterion (AIC), Bayesian information
criterion (BIC), Cross-validation (CV)
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